Multiple PV1 dimers reside in the same stomatal or fenestral diaphragm.

نویسنده

  • Radu V Stan
چکیده

Several of the endothelium-specific structures that have been involved in microvascular permeability [such as caveolae, transendothelial channels (TECs), vesiculovacuolar organelles (VVOs), and fenestrae] can be provided with either a stomatal or fenestral diaphragm. In the case of fenestrae, the diaphragm has the presumed function of creating a permselective barrier for solutes from blood plasma and interstitium. PV1 is an endothelium-specific integral membrane glycoprotein that is associated with both the stomatal diaphragms of caveolae, TECs, and VVOs as well as the diaphragms of endothelial fenestrae. The intimate structure of these diaphragms has been shown to consist of a meshwork formed by radial fibrils. We have recently shown that PV1 is a key structural element of both types of diaphragms, with its expression being sufficient to form de novo stomatal and fenestral diaphragms in both endothelial and nonendothelial cell types in culture. We have further tested the role of PV1 in the structure of the diaphragms and demonstrate here that multiple PV1 homodimers reside in close proximity within the same diaphragm. Our data bring further support to the paradigm by which PV1 dimers would form the fibrils of the diaphragms with a function in the microvascular permeability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms.

PV1 is an endothelial-specific integral membrane glycoprotein associated with the stomatal diaphragms of caveolae, transendothelial channels, and vesiculo-vacuolar organelles and the diaphragms of endothelial fenestrae. Multiple PV1 homodimers are found within each stomatal and fenestral diaphragm. We investigated the function of PV1 within these diaphragms and their regulation and found that t...

متن کامل

Caveolae, Fenestrae and Transendothelial Channels Retain PV1 on the Surface of Endothelial Cells

PV1 protein is an essential component of stomatal and fenestral diaphragms, which are formed at the plasma membrane of endothelial cells (ECs), on structures such as caveolae, fenestrae and transendothelial channels. Knockout of PV1 in mice results in in utero and perinatal mortality. To be able to interpret the complex PV1 knockout phenotype, it is critical to determine whether the formation o...

متن کامل

PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia.

PV-1 is a novel endothelial protein shown by immunocytochemical tests to be specifically associated with the stomatal diaphragms of caveolae in lung endothelium. Although the highest expression levels of both mRNA and protein are in the lung, PV-1 also has been found to be expressed in other organs. Using a specific antibody to the extracellular domain of PV-1, we have extended the survey on th...

متن کامل

Endothelial fenestral diaphragms: a quick-freeze, deep-etch study

The route by which water, solutes, and macromolecules traverse the endothelial cell has long been a subject of study for both physiologists and cell biologists. Recent physiologic studies describe a slit-shaped pore (5.1-5.7-nm wide) as the communicating channel, although no channel of such dimensions has been visible in electron microscopic preparations. That this channel should be found withi...

متن کامل

PV1 down-regulation via shRNA inhibits the growth of pancreatic adenocarcinoma xenografts

PV1 is an endothelial-specific protein with structural roles in the formation of diaphragms in endothelial cells of normal vessels. PV1 is also highly expressed on endothelial cells of many solid tumours. On the basis of in vitro data, PV1 is thought to actively participate in angiogenesis. To test whether or not PV1 has a function in tumour angiogenesis and in tumour growth in vivo, we have tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 286 4  شماره 

صفحات  -

تاریخ انتشار 2004